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1 Introduction

My research focus is on algorithm design for large-scale problems with both theoretical significance and
practical impacts. With the emergence of extremely large-size datasets and the unprecedented need for
understanding the data, machine learning and data mining have become fields where many compelling
algorithmic challenges arise. My work seeks to extend results in both continuous and discrete arenas and
exploit them in combination.

Combinatorial optimization, especially graph theory, has been instrumental in high performance com-
puting areas such as VLSI design, combinatorial scientific computing and modeling of memory hierarchies.
There is a long history in these fields of getting efficiency from combinatorial structures. Given the im-
portance of efficiency in machine learning and data mining, as well as the abundance of combinatorial
structures in many applications, methods that make use of these structures have the potential to be far
more impactful in modern machine learning applications. In particular, we can exploit classical com-
binatorial ideas in conjunction with algebraic methods from fields such as continuous optimization and
numerical linear algebra to address some of the fundamental drawbacks of numerical methods. Most of my
work demonstrates this phenomenon, where I integrate combinatorial and algebraic primitives to design
stronger and more practical algorithms that achieve the best of both worlds. This integration is also driving
the broader progress at the core of these fields, and I believe the expanding interface between these fields
will be the key to progress on many critical modern algorithmic challenges. The approach I take towards
designing algorithms, which integrates combinatorial and algebraic perspectives, has consistently led to
new insights on such questions, and I plan to further pursue this exciting direction. Main areas of my work
include:

1. Large-scale Optimization. Iterative first-order (i.e. gradient based) descent methods from (con-
tinuous) convex optimization are basic tools that have become workhorses in machine learning for
optimizaing over data sets. Building upon recent works on giving provably better bounds for first
order methods, I utilized the combinatorial structures of positive linear programs to further speed
up the convergence of these algorithms.

2. Graph Algorithms. Graphs are of central importance in numerous applications where relational
and statistical data arise. In particular, in addition to making technical contributions to algorithms
for partitioning, clustering and regression on graphs [9, 20, 14], I recently gave a new tool combining
properties of spectral and classical network flow methods which bypasses central bottlenecks for each,
which leads to not only stronger provable guarantees, but also improvements on real world datasets
in practice [22].

Before proceeding to my work in detail, let’s discuss the recent integration of combinatorial and numerical
techniques with a more concrete example. A very old idea is to use a spanning tree to pre-condition in the
context of iterative Laplacian linear system solving; algebraic techniques give a quick solution on the tree
which in turn vastly improves the condition number that limits the convergence of the iterative method.
The spanning tree in some sense provides enough global communication across the graph to overcome
the limitations of the locality inherent in iterative methods. More recently, this combination of algebra,
optimization, and graph theory has lead to dramatically faster algorithms for solving linear systems, and
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is being pushed to other problems in optimization including general linear programming. I have a recent
result in this framework for optimizing flows under p-norms. To be sure, part and parcel to this progress,
was to understand the propagation of information in graphs. Much of my work is in studying these phe-
nomena both in the context of graphs and optimization problems with more complicated interactions.

Examples of my work:

1. On graphs, spectral methods have been a building block in the design of fast graph algorithms both in
theory and in practice. Moreover, in the semi-supervised setting such as those used in search engines,
some of these methods, e.g. personalized PageRank, are capable of discovering interesting structures
while exploring only the local region around a given seed node or set of seed nodes, which makes
them very useful in identifying small-scale structures in massive graphs such as the internet or social
networks. By combining intuitions of spectral methods with classical ideas from graph algorithms
such as network flow, we initiated the study of a flow-based diffusion process which gave distinct
information propagation dynamics from spectral methods, and achieved both the stronger optimality
guarantee from flow as well as the simple and local properties of spectral methods in the context
of graph partitioning. Our diffusion has led to better provable guarantees for several fundamental
problems, and we demonstrated improved performance of our diffusion with experiments on real-
world graphs [22].

2. I have worked on linear programs with packing and covering constraints, which are classical the-
ory problems and also arise in a wide-range of applications, e.g. data summarization and resource
allocation. One essential aspect of applying iterative first-order descent methods is that variables
communicate with each other via a fairly local channel, i.e. the gradients. Using insights of the un-
derlying geometries of the specific problems, we tailored discrete techniques and integrated them into
first-order methods to smooth the problem space to allow numerical updates according to gradients
converge more quickly to the optimum [23, 16].

Current and Future Directions My research draws on techniques broadly from fields such as algorith-
mic graph theory, convex optimization and numerical linear algebra. The integration of combinatorial and
algebraic approaches brings intriguing new perspectives to algorithm design, and I believe this direction
can lead to more exciting progress on problems with significant implications both in theory and in practice.
Particular future directions I plan to pursue in the near future include

1. More empirically oriented studies and adaptations of our new graph partitioning and local clustering
tools in broader domains, such as image processing, information retrieval, ranking, and social network
analysis. Also extending the tools to settings such as hyper-graphs, motif patterns, and statistical
generative graph models. I intend to work closely with collaborators from the application side on
these topics to address more practical questions.

2. The theoretical foundations of the novel flow-based diffusion process on graphs as it should have
provably nice properties in broader settings, and can become a primitive in the design of fast graph
algorithms both in theory and in practice.

3. The design of complementary combinatorial tools and algebraic routines that can lead to better
trade-offs between discrete and numerical approaches to get improved algorithms for more classical
problems in algorithmic graph theory, e.g. flow problems in non-linear settings, and more broadly in
combinatorial optimization.

Of course the range of interesting problems goes much wider. I plan to push my work further into the
intersection of algorithm design and the foundations of machine learning, data mining and network science.
The simultaneous emergence of breakthrough techniques in algorithms and a multitude of new problems
in these areas is an exciting opportunity.
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2 Convex Optimization

Non-negative linear programs (LPs) are LPs where all variables, coefficients and constants are non-negative;
two important and well-studied special cases of non-negative LP are packing LP and covering LP. These
LPs model many fundamental problems both in theory and in practice, and have long been studied by
the optimization and computer science communities. The example of positive LPs highlights a traditional
gap between the fields of optimization and computation. Optimization theory studies methods for certain
classes of nice functions, e.g., strongly convex or Lipschitz smooth functions, and the performance of these
methods is limited by the geometry of the problem space, as well as properties of the objective function.
In theory of computation, we design algorithms to optimize specific problems, e.g. maximum matching,
and although optimization theory offers abundant intuition on some aspects of our problems, optimization
methods may suffer slow convergence as the specific function and problem space we work with can have
very poor characterization in terms of the properties necessary for convex optimization methods to perform
well. In the case of positive LPs, although first-order iterative methods get optimal dependence on the
approximation error ε, the convergence rate of these solvers can be limited by the width of the LP, which
depends on the largest entry in the LP and its optimal value. On the other hand, there is a line of research in
combinatorial optimization, started by Luby and Nisan [15], which gets width-independent solvers but with
worse dependence on the ε. Together with my collaborators, we adapted the first-order iterative methods
with techniques that exploit the problem-specific structures to significantly improve their behavior, and
designed positive LP solvers with both width-independence and best dependence on approximation error.

More specifically, we built a discrete lifting technique for covering LPs. This technique reorganizes the
geometry of the constraint space of the LPs, so that the optimal solution won’t be hidden in ill-shaped
corners that are difficult to reach for a particular first-order method developed by Allen-Zhu and Orecchia [2]
for packing LPs. We gave a Õ(N/ε) algorithm for covering LPs, matching a previous breakthrough by
Allen-Zhu and Orecchia [2] for packing LPs, where N is the size of the LP and ε is the approximation
error. In addition, for parallel solvers we designed a methodology that constructs an update vector from
the gradient such that the objective function is much smoother along the direction of our update vector
than along the actual gradient, so the first-order method can take much larger update steps. Our parallel
solver takes Õ(1/ε2) time, which is Ω(1/ε) faster than the previous best algorithm. The methodology
developed in our parallel solver has been applied by others to get improved positive SDP solvers [1].

For general non-negative LPs, with my collaborators, I designed a width-independent Õ(1/ε3) depth
parallel algorithm [16], improving a long-standing bound of Õ(1/ε4) [24] for this class of LPs. In particu-
lar, we achieved the improvement by integrating insights of first-order iterative methods from continuous
optimization and the primal-dual framework from combinatorial optimization. A direct adaptation of our
algorithm has been applied by others beyond the case of LPs to develop faster algorithms for submodular
functions [8].

3 Local Graph Algorithms

Another main focus of my research is on graph algorithms, especially cut and flow problems in graphs.
Graph algorithm is a classical area in combinatorial optimization. Moreover, graphs emerge naturally in
practice, e.g. social networks, and are also widely constructed from relational data, e.g. similarity graphs,
and thus graph algorithm has become one of the main areas in machine learning and data mining. Most
of work is oriented towards modern real-world challenges, which require simple and robust methods that
are very efficient when dealing with massive graphs.

One essential aspect of the graph structure that is of central importance in many applications is to
understand the bottlenecks in the network, and in particular finding low conductance cuts. Together with
my collaborators, I designed a flow-based local method to find low conductance cuts; a local method being
one whose running time depends only on the volume of the (smaller side of the) cut that it outputs.
While flow and probability mass diffusion (or more generally, spectral methods) have a long history of
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competing to provide good graph decompositions [5, 13, 18], local methods are predominantly based on
diffusion [4, 7, 3, 25]. Some flow-based local methods [19] have been studied before, but these methods
mostly require a given seed set that has large overlap with a low conductance cut, and finding such a seed
set relies on diffusion-based methods. Our work is the first primarily flow-based local method for locating
low conductance cuts, and has exhibited improved theoretical and empirical behavior over classical spectral
methods, e.g. personalized PageRank [3]. So far the tools we built have led to improvements on several
fundamental problems in data mining and algorithmic graph theory.

3.1 Local graph clustering

In local graph clustering, we are given one or multiple seed vertices, and want to find a nice cluster (if
exists) around the seed node. This task arises broadly in semi-supervised learning and data analysis, e.g.
community detection in social networks, and information retrieval on similarity graph constructed from
datasets. A local algorithm is desired in this setting, since we don’t want a method that needs to touch the
entire graph, which can be much larger than the local cluster of interest. Local clustering methods are also
used as subroutines in graph decomposition, which in turn plays critical role in many graph algorithms,
e.g., the first nearly linear time Laplacian solver by Spielman and Teng [21].

We built upon our local flow algorithm to design a local clustering algorithm []. The key idea is to
deviate from prior flow-based methods on how the edge capacities are set, and instead use an adaptive
mechanism inspired by local spectral methods to set the edge capacities as the diffusion evolves. This allow
us to escape the pitfalls of both spectral and flow on the classical bad examples. In practice, our method is
much more robust against noise in the data empirically, and in theory our method is the first local method
not subject to the quadratic Cheeger barrier.

3.1.1 Graph decomposition

Graph decomposition algorithms are extensively studied in algorithmic graph theory, and have wide prac-
tical applications in unsupervised learning, e.g. social network analysis and image segmentation. A natural
bicriteria notion for graph decomposition introduced by Kannan Vempala and Vetta [10], referred to as ex-
pander decomposition, is to decompose a graph into clusters such that each cluster is richly intraconnected
and sparsely connected to the rest of the graph. More formally, given a graph G = (V,E) we aim to find a
partitioning of V into V1, . . . , Vk for some k, such that the total number of edges across different clusters
is small while the conductance of each cluster as an induced subgraph is large. This bicriteria measure is
advantageous over other popular measures such as min diameter decomposition, k-center, and k-median
since there are simple examples where these measures fail to capture the natural clustering. Moreover,
expander decomposition has seen great applications in theory including graph sketching/sparsification,
undirected/directed Laplacian solvers, max flow algorithms, approximation algorithms for unique game,
and dynamic minimum spanning forest algorithms. With the abundance of massive graphs, it is crucial to
design algorithms with running time at most nearly linear in the size of the graph, and thus nearly linear
time expander decomposition methods are of great interest both in theory and in practice.

Together with my collaborators, I gave an improved algorithm for this problem that, given an m-
edge graph G = (V,E) and a parameter φ, partitions V into expander clusters V1, . . . , Vk for some k,
such that the conductance of each clusters is at least Ω(φ) while the total number of edges between
clusters is at most Õ(φm). Our algorithm runs in Õ(m/φ) time. Our result is the first nearly linear time
expander decomposition algorithm in the regime of φ being at least 1/ logO(1)m, which is the case for
most applications of expander decomposition. Previous methods either runs in super-linear time [17], or
provides weaker guarantee in the form that each cluster is only contained in some unknown larger expander
rather than being an induced expander [21]. Our algorithm exploits certain dynamic feature of the local flow
method, that is, the method remains efficient in the setting where the graph may be updated with edge and
node deletions. Not surprisingly, the dynamic feature also led to improved expander pruning algorithms in
the dynamic setting, which is the key tool in recent developments of dynamic graph connectivity algorithms.
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Moreover, previous algorithms either use approximate sparsest cut or max flow algorithms as a black-
box, which has a horrendous polylogn factor in the running time, and is also not easy to implement or even
capture with simpler heuristics. In contrast, our result is developed from the first principle and exploits
the local flow-based method to find low conductance cut, leading to a simple and basic algorithm of great
practical interests.

4 Broader Connections

Deterministic minimum cut algorithm for simple graphs Together with my collaborators, I devel-
oped a deterministic algorithm for edge connectivity, i.e. min cut in unweighted graphs, with running time
O(m log2m log log2m) [9]. The result sharpens a previous breakthrough by Kawarabayashi and Thorup
which has deterministic running time O(m log12m) [12], and is even better than the fastest randomized
algorithm with running time O(m log3m) by Karger [11], although Karger’s result generalizes to weighted
graphs. This work is built upon our local flow-based tool to find low conductance cuts.

Graph Sparsification As a consequence of our stronger expander decomposition result, we also achieved
better graph sparsification. Beyond technical improvement on the running time and being simpler to apply,
the stronger guarantee that each cluster is an induced expander greatly extends the range of applications
of graph sparsification to cases where previous approaches are not sufficient, e.g. short-cycle decomposition
and dynamic graph connectivity, and multi-objective preserving sparsification.

p-norm flows Together with my collaborators, I recently had a result for solving a large class of flow
problems on unit weighted graphs to high accuracy in almost-linear time, where the objective functions
interpolate between `2 (i.e. electrical flow) and `∞ (i.e. max flow) norms. This is the first almost linear time
flow algorithm beyond the case of p = 1 (i.e. shortest path) and p = 2 (i.e. electrical flow). Our framework
is inspired by the routing based solver for Laplacian linear systems by Spielman and Teng [21], and greatly
extends the technical tools in their work to much broader settings. One of the key components is the
stronger expander decomposition result describe earlier to preserve multiple objectives under sampling. The
applications of our result include: (1) a new approach for computing approximate max flows on undirected
graphs that does not use oblivious routing; (2) the first almost-linear time high-accuracy algorithms for
p-norm semi-supervised learning on graphs when p < 2; and (3) the first almost-linear time algorithm for
approximate total variation minimization.
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